3.235 \(\int \frac{x^4 (a+b \sin ^{-1}(c x))^2}{\sqrt{d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=337 \[ \frac{b x^4 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt{d-c^2 d x^2}}-\frac{x^3 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 c^2 d}+\frac{3 b x^2 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c^3 \sqrt{d-c^2 d x^2}}-\frac{3 x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^4 d}+\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{8 b c^5 \sqrt{d-c^2 d x^2}}+\frac{b^2 x^3 \left (1-c^2 x^2\right )}{32 c^2 \sqrt{d-c^2 d x^2}}+\frac{15 b^2 x \left (1-c^2 x^2\right )}{64 c^4 \sqrt{d-c^2 d x^2}}-\frac{15 b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{64 c^5 \sqrt{d-c^2 d x^2}} \]

[Out]

(15*b^2*x*(1 - c^2*x^2))/(64*c^4*Sqrt[d - c^2*d*x^2]) + (b^2*x^3*(1 - c^2*x^2))/(32*c^2*Sqrt[d - c^2*d*x^2]) -
 (15*b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/(64*c^5*Sqrt[d - c^2*d*x^2]) + (3*b*x^2*Sqrt[1 - c^2*x^2]*(a + b*ArcSi
n[c*x]))/(8*c^3*Sqrt[d - c^2*d*x^2]) + (b*x^4*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(8*c*Sqrt[d - c^2*d*x^2])
 - (3*x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(8*c^4*d) - (x^3*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)
/(4*c^2*d) + (Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^3)/(8*b*c^5*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.484204, antiderivative size = 337, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {4707, 4643, 4641, 4627, 321, 216} \[ \frac{b x^4 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt{d-c^2 d x^2}}-\frac{x^3 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 c^2 d}+\frac{3 b x^2 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c^3 \sqrt{d-c^2 d x^2}}-\frac{3 x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^4 d}+\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{8 b c^5 \sqrt{d-c^2 d x^2}}+\frac{b^2 x^3 \left (1-c^2 x^2\right )}{32 c^2 \sqrt{d-c^2 d x^2}}+\frac{15 b^2 x \left (1-c^2 x^2\right )}{64 c^4 \sqrt{d-c^2 d x^2}}-\frac{15 b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{64 c^5 \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^4*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(15*b^2*x*(1 - c^2*x^2))/(64*c^4*Sqrt[d - c^2*d*x^2]) + (b^2*x^3*(1 - c^2*x^2))/(32*c^2*Sqrt[d - c^2*d*x^2]) -
 (15*b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x])/(64*c^5*Sqrt[d - c^2*d*x^2]) + (3*b*x^2*Sqrt[1 - c^2*x^2]*(a + b*ArcSi
n[c*x]))/(8*c^3*Sqrt[d - c^2*d*x^2]) + (b*x^4*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(8*c*Sqrt[d - c^2*d*x^2])
 - (3*x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(8*c^4*d) - (x^3*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)
/(4*c^2*d) + (Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^3)/(8*b*c^5*Sqrt[d - c^2*d*x^2])

Rule 4707

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSin[c*x])^n)/(e*m), x] + (Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m
 - 2)*(a + b*ArcSin[c*x])^n)/Sqrt[d + e*x^2], x], x] + Dist[(b*f*n*Sqrt[1 - c^2*x^2])/(c*m*Sqrt[d + e*x^2]), I
nt[(f*x)^(m - 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] &&
GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rule 4643

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 - c^2*x^2]/Sq
rt[d + e*x^2], Int[(a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*
d + e, 0] &&  !GtQ[d, 0]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{x^4 \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{d-c^2 d x^2}} \, dx &=-\frac{x^3 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 c^2 d}+\frac{3 \int \frac{x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{d-c^2 d x^2}} \, dx}{4 c^2}+\frac{\left (b \sqrt{1-c^2 x^2}\right ) \int x^3 \left (a+b \sin ^{-1}(c x)\right ) \, dx}{2 c \sqrt{d-c^2 d x^2}}\\ &=\frac{b x^4 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt{d-c^2 d x^2}}-\frac{3 x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^4 d}-\frac{x^3 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 c^2 d}+\frac{3 \int \frac{\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{d-c^2 d x^2}} \, dx}{8 c^4}-\frac{\left (b^2 \sqrt{1-c^2 x^2}\right ) \int \frac{x^4}{\sqrt{1-c^2 x^2}} \, dx}{8 \sqrt{d-c^2 d x^2}}+\frac{\left (3 b \sqrt{1-c^2 x^2}\right ) \int x \left (a+b \sin ^{-1}(c x)\right ) \, dx}{4 c^3 \sqrt{d-c^2 d x^2}}\\ &=\frac{b^2 x^3 \left (1-c^2 x^2\right )}{32 c^2 \sqrt{d-c^2 d x^2}}+\frac{3 b x^2 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c^3 \sqrt{d-c^2 d x^2}}+\frac{b x^4 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt{d-c^2 d x^2}}-\frac{3 x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^4 d}-\frac{x^3 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 c^2 d}+\frac{\left (3 \sqrt{1-c^2 x^2}\right ) \int \frac{\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{1-c^2 x^2}} \, dx}{8 c^4 \sqrt{d-c^2 d x^2}}-\frac{\left (3 b^2 \sqrt{1-c^2 x^2}\right ) \int \frac{x^2}{\sqrt{1-c^2 x^2}} \, dx}{32 c^2 \sqrt{d-c^2 d x^2}}-\frac{\left (3 b^2 \sqrt{1-c^2 x^2}\right ) \int \frac{x^2}{\sqrt{1-c^2 x^2}} \, dx}{8 c^2 \sqrt{d-c^2 d x^2}}\\ &=\frac{15 b^2 x \left (1-c^2 x^2\right )}{64 c^4 \sqrt{d-c^2 d x^2}}+\frac{b^2 x^3 \left (1-c^2 x^2\right )}{32 c^2 \sqrt{d-c^2 d x^2}}+\frac{3 b x^2 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c^3 \sqrt{d-c^2 d x^2}}+\frac{b x^4 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt{d-c^2 d x^2}}-\frac{3 x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^4 d}-\frac{x^3 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 c^2 d}+\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{8 b c^5 \sqrt{d-c^2 d x^2}}-\frac{\left (3 b^2 \sqrt{1-c^2 x^2}\right ) \int \frac{1}{\sqrt{1-c^2 x^2}} \, dx}{64 c^4 \sqrt{d-c^2 d x^2}}-\frac{\left (3 b^2 \sqrt{1-c^2 x^2}\right ) \int \frac{1}{\sqrt{1-c^2 x^2}} \, dx}{16 c^4 \sqrt{d-c^2 d x^2}}\\ &=\frac{15 b^2 x \left (1-c^2 x^2\right )}{64 c^4 \sqrt{d-c^2 d x^2}}+\frac{b^2 x^3 \left (1-c^2 x^2\right )}{32 c^2 \sqrt{d-c^2 d x^2}}-\frac{15 b^2 \sqrt{1-c^2 x^2} \sin ^{-1}(c x)}{64 c^5 \sqrt{d-c^2 d x^2}}+\frac{3 b x^2 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c^3 \sqrt{d-c^2 d x^2}}+\frac{b x^4 \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt{d-c^2 d x^2}}-\frac{3 x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^4 d}-\frac{x^3 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 c^2 d}+\frac{\sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{8 b c^5 \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 1.3866, size = 283, normalized size = 0.84 \[ \frac{32 a^2 c \sqrt{d} x \left (c^2 x^2-1\right ) \left (2 c^2 x^2+3\right )-96 a^2 \sqrt{d-c^2 d x^2} \tan ^{-1}\left (\frac{c x \sqrt{d-c^2 d x^2}}{\sqrt{d} \left (c^2 x^2-1\right )}\right )-4 a b \sqrt{d} \sqrt{1-c^2 x^2} \left (-4 \sin ^{-1}(c x) \left (6 \sin ^{-1}(c x)-8 \sin \left (2 \sin ^{-1}(c x)\right )+\sin \left (4 \sin ^{-1}(c x)\right )\right )+16 \cos \left (2 \sin ^{-1}(c x)\right )-\cos \left (4 \sin ^{-1}(c x)\right )\right )+b^2 \sqrt{d} \sqrt{1-c^2 x^2} \left (32 \sin ^{-1}(c x)^3+8 \left (\sin \left (4 \sin ^{-1}(c x)\right )-8 \sin \left (2 \sin ^{-1}(c x)\right )\right ) \sin ^{-1}(c x)^2+32 \sin \left (2 \sin ^{-1}(c x)\right )-\sin \left (4 \sin ^{-1}(c x)\right )+4 \sin ^{-1}(c x) \left (\cos \left (4 \sin ^{-1}(c x)\right )-16 \cos \left (2 \sin ^{-1}(c x)\right )\right )\right )}{256 c^5 \sqrt{d} \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^4*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(32*a^2*c*Sqrt[d]*x*(-1 + c^2*x^2)*(3 + 2*c^2*x^2) - 96*a^2*Sqrt[d - c^2*d*x^2]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2
])/(Sqrt[d]*(-1 + c^2*x^2))] + b^2*Sqrt[d]*Sqrt[1 - c^2*x^2]*(32*ArcSin[c*x]^3 + 4*ArcSin[c*x]*(-16*Cos[2*ArcS
in[c*x]] + Cos[4*ArcSin[c*x]]) + 32*Sin[2*ArcSin[c*x]] - Sin[4*ArcSin[c*x]] + 8*ArcSin[c*x]^2*(-8*Sin[2*ArcSin
[c*x]] + Sin[4*ArcSin[c*x]])) - 4*a*b*Sqrt[d]*Sqrt[1 - c^2*x^2]*(16*Cos[2*ArcSin[c*x]] - Cos[4*ArcSin[c*x]] -
4*ArcSin[c*x]*(6*ArcSin[c*x] - 8*Sin[2*ArcSin[c*x]] + Sin[4*ArcSin[c*x]])))/(256*c^5*Sqrt[d]*Sqrt[d - c^2*d*x^
2])

________________________________________________________________________________________

Maple [B]  time = 0.476, size = 871, normalized size = 2.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x)

[Out]

-1/4*a^2*x^3/c^2/d*(-c^2*d*x^2+d)^(1/2)-3/8*a^2/c^4*x/d*(-c^2*d*x^2+d)^(1/2)+3/8*a^2/c^4/(c^2*d)^(1/2)*arctan(
(c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))-1/8*b^2*(-d*(c^2*x^2-1))^(1/2)/c/d/(c^2*x^2-1)*arcsin(c*x)*(-c^2*x^2+1)^
(1/2)*x^4-3/8*b^2*(-d*(c^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*arcsin(c*x)*(-c^2*x^2+1)^(1/2)*x^2+15/64*b^2*(-d*(c
^2*x^2-1))^(1/2)/c^5/d/(c^2*x^2-1)*arcsin(c*x)*(-c^2*x^2+1)^(1/2)-1/4*b^2*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)
*arcsin(c*x)^2*x^5-1/8*b^2*(-d*(c^2*x^2-1))^(1/2)/c^2/d/(c^2*x^2-1)*arcsin(c*x)^2*x^3+3/8*b^2*(-d*(c^2*x^2-1))
^(1/2)/c^4/d/(c^2*x^2-1)*arcsin(c*x)^2*x-1/8*b^2*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^5/d/(c^2*x^2-1)*a
rcsin(c*x)^3+1/32*b^2*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*x^5+13/64*b^2*(-d*(c^2*x^2-1))^(1/2)/c^2/d/(c^2*x^2
-1)*x^3-15/64*b^2*(-d*(c^2*x^2-1))^(1/2)/c^4/d/(c^2*x^2-1)*x-3/8*a*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)
/c^5/d/(c^2*x^2-1)*arcsin(c*x)^2-1/2*a*b*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*arcsin(c*x)*x^5-1/4*a*b*(-d*(c^2
*x^2-1))^(1/2)/c^2/d/(c^2*x^2-1)*arcsin(c*x)*x^3+3/4*a*b*(-d*(c^2*x^2-1))^(1/2)/c^4/d/(c^2*x^2-1)*arcsin(c*x)*
x+15/64*a*b*(-d*(c^2*x^2-1))^(1/2)/c^5/d/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)-1/8*a*b*(-d*(c^2*x^2-1))^(1/2)/c/d/(c^
2*x^2-1)*(-c^2*x^2+1)^(1/2)*x^4-3/8*a*b*(-d*(c^2*x^2-1))^(1/2)/c^3/d/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)*x^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (b^{2} x^{4} \arcsin \left (c x\right )^{2} + 2 \, a b x^{4} \arcsin \left (c x\right ) + a^{2} x^{4}\right )} \sqrt{-c^{2} d x^{2} + d}}{c^{2} d x^{2} - d}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-(b^2*x^4*arcsin(c*x)^2 + 2*a*b*x^4*arcsin(c*x) + a^2*x^4)*sqrt(-c^2*d*x^2 + d)/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4} \left (a + b \operatorname{asin}{\left (c x \right )}\right )^{2}}{\sqrt{- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**4*(a + b*asin(c*x))**2/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{4}}{\sqrt{-c^{2} d x^{2} + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^2*x^4/sqrt(-c^2*d*x^2 + d), x)